Extended Mumford-Shah Regularization in Bayesian Estimation for Blind Image Deconvolution and Segmentation
نویسندگان
چکیده
We present an extended Mumford-Shah regularization for blind image deconvolution and segmentation in the context of Bayesian estimation for blurred, noisy images or video sequences. The MumfordShah functional is extended to have cost terms for the estimation of blur kernels via a newly introduced prior solution space. This functional is minimized using Γ -convergence approximation in an embedded alternating minimization within Neumann conditions. Accurate blur identification is the basis of edge-preserving image restoration in the extended Mumford-Shah regularization. One output of the finite set of curves and object boundaries are grouped and partitioned via a graph theoretical approach for the segmentation of blurred objects. The chosen regularization parameters using the L-curve method is presented. Numerical experiments show that the proposed algorithm is efficiency and robust in that it can handle images that are formed in different environments with different types and amounts of blur and noise.
منابع مشابه
Joint prior models of mumford-shah regularization for blur identification and segmentation in video sequences
We study a regularized Mumford-Shah functional in the context of joint prior models for blur identification, blind image deconvolution and segmentation. For the ill-posed regularization problem, it is hard to find a good initial value for ensuring the soundness of the convergent value. A newly introduced prior solution space of point spread functions in a double regularized Bayesian estimation ...
متن کاملProgressive Blind Deconvolution
We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remaine...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملMultichannel blind iterative image restoration
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environmen...
متن کاملOn the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional
In region-based image segmentation, two models dominate the field: the Mumford-Shah functional and statistical approaches based on Bayesian inference. Whereas the latter allow for numerous ways to describe the statistics of intensities in regions, the first includes spatially smooth approximations. In this paper, we show that the piecewise smooth Mumford-Shah functional is a first order approxi...
متن کامل